Research

PIE-NeRF Serves Up a New Slice: Physics-Based NeRFs

Michael Rubloff

Nov 24, 2023

PIE-NeRF
PIE-NeRF

Just when we thought the week couldn't get more exciting in the world of physics-based radiance fields, we're introduced to another groundbreaking development: PIE-NeRF (Physics-based Interactive Elastodynamics with Neural Radiance Fields). Coming hot on the heels of the remarkable PhysGaussian paper, PIE-NeRF represents another leap forward, this time in the domain of Neural Radiance Fields (NeRFs).

PIE-NeRF emerges as a standout innovation, shifting the paradigm from traditional mesh-based structures to a pioneering meshless technique for simulating physical dynamics. This leap is particularly noteworthy, considering the intensive computational demands typically associated with 3D modeling.

It's been a busy time for Yutao Feng, Xuan Li, Yin Yang, and Chenfanfu Jiang, all of whom are authors on both papers!

PIE-NeRF integrates physics-based simulations with the NeRF scene. This integration is akin to infusing the static scene with the laws of physics - gravity, force, and motion - allowing for the realistic simulation of dynamic properties. Whether it's a swaying plant or a flowing cloth, PIE-NeRF calculates how these objects would move and interact in a real-world setting.

PIE-NeRF starts its journey by reimagining how we capture 3D scenes. Unlike conventional methods that rely on rigid mesh structures, NeRF uses a fluid, continuous field, encoded within a neural network, to understand a scene's color, texture, and geometry from 2D images. This neural encoding of space lays the groundwork for the dynamic animations PIE-NeRF aims to achieve and is the canvas on which PIE-NeRF will paint its dynamic animations. Like many other papers, PIE-NeRF employs NVIDIA's Instant NGP to build on top off.

Transitioning to 3D, PIE-NeRF transcends static models to foster interactive, dynamic scenes. Here, the innovation truly shines: the framework calculates physical properties and movements within NeRF's continuous space, sidestepping the need for meshes. This meshless method is not just a technical novelty but a strategic advantage, enabling simulations to occur independently of sampling resolution, which dramatically lowers computational demands. PIE-NeRF enables physical properties and movements to be calculated within this continuous space, without the need for a predefined mesh.

Central to PIE-NeRF's operation is Quadratic Generalized Moving Least Squares (Q-GMLS), the engine that powers the framework. This advanced method interprets and simulates physical behaviors like elasticity and deformation within NeRF's space. Its ability to handle complex, non-linear deformations—where traditional linear methods stumble—marks a significant advancement, especially in avoiding 'locking artifacts', a common issue in linear simulations under extreme deformation scenarios.

In processing complex simulations, PIE-NeRF smartly employs spatial reduction via Voronoi partitioning. This approach is akin to strategically positioning sensors across a field, each overseeing a specific region. It ensures that computational resources are concentrated where dynamic interactions are most pronounced, thus fostering real-time interactions and simulations, without compromising the quality of the final output.

PIE-NeRF's true prowess is displayed when it integrates physics-based simulations with NeRF scenes. This integration is like breathing life into static models, as the laws of physics—gravity, force, motion—are applied, enabling realistic simulation of dynamic properties. Whether it's a swaying plant or flowing cloth, PIE-NeRF accurately predicts their real-world movements and interactions.

PIE-NeRF renders the dynamically altered scenes. Using deformation information, it precisely maps changes back to the NeRF model, ensuring that rendered images maintain high fidelity, even under significant deformations. Here, the interactive element comes into play: users can manipulate the scene, apply forces, and witness the immediate impact of their actions, all in real-time.

As PIE-NeRF continues to evolve, we eagerly await the release of its code and video overviews. These resources will undoubtedly provide deeper insights into its capabilities and applications. Powered by a 3090 GPU, PIE-NeRF is not just a testament to current technological advancements but a beacon for future innovations in digital representation.

[Editor's Note: This article will be updated with additional resources and demonstrations of PIE-NeRF as they become available.]

Featured

Featured

Featured

Platforms

OpenSplat adds Mac GPU Acceleration

OpenSplat, which brought Mac training to 3DGS has received a big update, now allowing users to train with MPS backend with GPU acceleration.

Michael Rubloff

Apr 15, 2024

Platforms

OpenSplat adds Mac GPU Acceleration

OpenSplat, which brought Mac training to 3DGS has received a big update, now allowing users to train with MPS backend with GPU acceleration.

Michael Rubloff

Apr 15, 2024

Platforms

OpenSplat adds Mac GPU Acceleration

OpenSplat, which brought Mac training to 3DGS has received a big update, now allowing users to train with MPS backend with GPU acceleration.

Michael Rubloff

Research

Shrinking 3DGS File Size

Gaussian Splatting has quickly become one of the most exciting research topics in Radiance Fields, thanks to its fast training, real time rendering rates, and easy to create pipeline. The one critique that emerged was the resulting file size from captures, often venturing into the high hundreds of megabytes and up.

Michael Rubloff

Apr 11, 2024

Research

Shrinking 3DGS File Size

Gaussian Splatting has quickly become one of the most exciting research topics in Radiance Fields, thanks to its fast training, real time rendering rates, and easy to create pipeline. The one critique that emerged was the resulting file size from captures, often venturing into the high hundreds of megabytes and up.

Michael Rubloff

Apr 11, 2024

Research

Shrinking 3DGS File Size

Gaussian Splatting has quickly become one of the most exciting research topics in Radiance Fields, thanks to its fast training, real time rendering rates, and easy to create pipeline. The one critique that emerged was the resulting file size from captures, often venturing into the high hundreds of megabytes and up.

Michael Rubloff

Platforms

Luma AI Android Released

Native Android support from Luma AI is finally here. Of all the questions about Luma features I get, Android support is routinely at the top of the list.

Michael Rubloff

Apr 10, 2024

Platforms

Luma AI Android Released

Native Android support from Luma AI is finally here. Of all the questions about Luma features I get, Android support is routinely at the top of the list.

Michael Rubloff

Apr 10, 2024

Platforms

Luma AI Android Released

Native Android support from Luma AI is finally here. Of all the questions about Luma features I get, Android support is routinely at the top of the list.

Michael Rubloff

Research

PhysAvatar's Dynamic Dances

Playing as yourself in a video game has always seemed like a fun idea. Now, we're one step closer to making that a reality with PhysAvatar.

Michael Rubloff

Apr 9, 2024

Research

PhysAvatar's Dynamic Dances

Playing as yourself in a video game has always seemed like a fun idea. Now, we're one step closer to making that a reality with PhysAvatar.

Michael Rubloff

Apr 9, 2024

Research

PhysAvatar's Dynamic Dances

Playing as yourself in a video game has always seemed like a fun idea. Now, we're one step closer to making that a reality with PhysAvatar.

Michael Rubloff

Trending articles

Trending articles

Trending articles

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Lightfield and hologram capture started with a big theoretical idea 115 years ago and we have struggled to make them viable ever since. Neural Radiance fields aka NeRF along with gaming computers now for the first time provide a promising easy and low cost way for everybody to capture and display lightfields.

Katrin Schmid

Mar 2, 2023

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Lightfield and hologram capture started with a big theoretical idea 115 years ago and we have struggled to make them viable ever since. Neural Radiance fields aka NeRF along with gaming computers now for the first time provide a promising easy and low cost way for everybody to capture and display lightfields.

Katrin Schmid

Mar 2, 2023

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Lightfield and hologram capture started with a big theoretical idea 115 years ago and we have struggled to make them viable ever since. Neural Radiance fields aka NeRF along with gaming computers now for the first time provide a promising easy and low cost way for everybody to capture and display lightfields.

Katrin Schmid

Featured

Featured

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

SplaTV

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Kevin Kwok, perhaps better known as Antimatter15, has released something amazing: splaTV.

Michael Rubloff

Mar 15, 2024

SplaTV

Tools

splaTV: Dynamic Gaussian Splatting Viewer

Michael Rubloff

Mar 15, 2024

SplaTV

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Radiance Field Video Call

Research

Live NeRF Video Calls

Catching up with my sister has been an exercise in bridging distances. She recently moved to Copenhagen, trading the familiar landscapes of our shared childhood for the charming streets of the Danish capital.

Michael Rubloff

Oct 5, 2023

Radiance Field Video Call

Research

Live NeRF Video Calls

Michael Rubloff

Oct 5, 2023

Radiance Field Video Call

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Lightfield and hologram capture started with a big theoretical idea 115 years ago and we have struggled to make them viable ever since. Neural Radiance fields aka NeRF along with gaming computers now for the first time provide a promising easy and low cost way for everybody to capture and display lightfields.

Katrin Schmid

Mar 2, 2023

History of Neural Radiance Fields

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Lightfield and hologram capture started with a big theoretical idea 115 years ago and we have struggled to make them viable ever since. Neural Radiance fields aka NeRF along with gaming computers now for the first time provide a promising easy and low cost way for everybody to capture and display lightfields.

Katrin Schmid

Mar 2, 2023

History of Neural Radiance Fields

Guest Article

A short 170 year history of Neural Radiance Fields (NeRF), Holograms, and Light Fields

Katrin Schmid

Mar 2, 2023

History of Neural Radiance Fields

Recent articles

Recent articles

Platforms

OpenSplat adds Mac GPU Acceleration

OpenSplat, which brought Mac training to 3DGS has received a big update, now allowing users to train with MPS backend with GPU acceleration.

Michael Rubloff

Apr 15, 2024

OpenSplat

Platforms

OpenSplat adds Mac GPU Acceleration

OpenSplat, which brought Mac training to 3DGS has received a big update, now allowing users to train with MPS backend with GPU acceleration.

Michael Rubloff

Apr 15, 2024

OpenSplat

Research

Shrinking 3DGS File Size

Gaussian Splatting has quickly become one of the most exciting research topics in Radiance Fields, thanks to its fast training, real time rendering rates, and easy to create pipeline. The one critique that emerged was the resulting file size from captures, often venturing into the high hundreds of megabytes and up.

Michael Rubloff

Apr 11, 2024

3dgs compress

Research

Shrinking 3DGS File Size

Gaussian Splatting has quickly become one of the most exciting research topics in Radiance Fields, thanks to its fast training, real time rendering rates, and easy to create pipeline. The one critique that emerged was the resulting file size from captures, often venturing into the high hundreds of megabytes and up.

Michael Rubloff

Apr 11, 2024

3dgs compress

Platforms

Luma AI Android Released

Native Android support from Luma AI is finally here. Of all the questions about Luma features I get, Android support is routinely at the top of the list.

Michael Rubloff

Apr 10, 2024

Platforms

Luma AI Android Released

Native Android support from Luma AI is finally here. Of all the questions about Luma features I get, Android support is routinely at the top of the list.

Michael Rubloff

Apr 10, 2024